

JPL Contamination Control Engineering

Brian Blakkolb
Contamination Control Engineering Group Leader
Jet Propulsion LaboratoryÉÔæc^&@

Brian.K.Blakkolb@jpl.nasa.gov 818.354.3905

Contamination Control Engineering for Payloads, Systems, and Missions

- JPL has extensive expertise fielding contamination sensitive missions—in house and with our NASA/industry/academic partners
- Development and implementation of performance-driven cleanliness requirements for a wide range missions and payloads
 - UV-Vis-IR: GALEX, Dawn, Juno, WFPC-II, AIRS, TES, et al
 - Propulsion, thermal control, robotic sample acquisition systems
- Contamination control engineering across the mission life cycle:
 - System and payload requirements derivation, analysis, and contamination control implementation plans
 - Hardware Design, Risk trades, Requirements V-V
 - Assembly, Integration & Test planning and implementation
 - Launch site operations and launch vehicle/payload integration
 - Flight ops
- Personnel on staff have expertise with space materials development and flight experiments
 - LDEF, MATLAB, MSX, EOIM-3, SAMMES

Contamination Control Process

GALEX—Galaxy Evolution Explorer

- Telescope Aperture: 50 cm
- Optical Design
 - Modified Ritchey-Chretien with Aspheric corrected
 - Far UV band 0.135—0.180 μ Near UV 0.180—0.300 μ
- System Cleanliness Requirements
 - Molecular: $< 0.065 \mu g/cm$
 - Particulate: < 1 PAC</p>

GALEX Satellite

AIRS—Atmospheric Infrared Sounder

- Spectral Range
 - IR 3.74 -- 15.4 μm
 - Visible/NIR 0.41--0.94 μ
- 58 K focal plane
 AIRS focal plane
 cryocooler, developed
 under contract
 with TRW
- Scanning Optics
- Cleanliness Requirements
 - Molecular: <1 μg/cm²
 - Particulate: < 0.02 PAC

Specialized Capabilities

- Molecular Contamination Spectral Effects (MCSE) Chamber
 - In situ measurement of optical effects of contamination
- Molecular Contamination Investigation Facility (MCIF)
 - Multiple temperature materials outgassing measurement
- Extensive library of materials outgassing data
 - MCIF (Modified MSFC-1559)
 - ASTM-E595
- Contamination Modeling
 - JPL-Developed molecular contamination transport codes
 - Space vacuum: System- and payload-level
 - Diffusion/convection environments: Habitable and extra-terrestrial atmospheric
 - System contamination issues associated with electric propulsion

Contamination Transport Modeling at JPL

Characterization of Contaminants

National Aeronautics and Space Administration

Molecular Contamination Spectral Effects (MCSE) Chamber

- Measure and evaluate the transmissive and reflective spectral effects of lenses and mirrors from VUV to Infrared wavelength. Turbo molecular drag (oil-free) range: 1K to 5E-07 torr Dual cryo-pumped vacuum – total pressure: 1E-07 to 1E-09 torr
- Molecular Contamination Monitoring Capabilities
 - Quartz crystal microbalances (QCM): One cryo-quartz crystal microbalance (CQCM)
 range 5K to 350K, 10 MHz Aluminum-plated crystals, Sensitivity: 3.5x10-9 gm/cm2/Hz
 - Residual Gas Analyzer (RGA)
- VUV-UV-Visible-NIR-IR Spectroscopy
 - Reflectance, Transmission
 - 120 nanometers to 25 microns
- Temperature control
 - K-Cell: +20 C to +165 C
 - Target control range: 15 K to 350 K
- BRDF (future capability)
 - Nd:Yag (1.06 nm)
 - CO2 (10.6 nm)
 - HeNe (635 nm)

Molecular Contamination Investigation Facility (MCIF)

- TEST CONFIGURATION AND CONDITIONS: The test can be conducted using the provided hardware/electronic components (source contaminant), which would be placed inside the Knudsen-Cell type sample heat exchanger, inside the test chamber
- Pressure: < E-05 Torr
- Three Quartz Crystal Microbalances
 - Independent temperature control
- Sample heat exchanger continuously variable to simulate mission operational temperature profile

Conclusions

National Aeronautics and Space Administration

- JPL has capabilities and expertise to successfully address contamination issues presented by space and habitable environments
- JPL has extensive experience fielding and managing contamination sensitive missions
- Excellent working relationship with the aerospace contamination control engineering community

These laboratory activities are carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Copyright 2013 California Institute of Technology. Government sponsorship acknowledged.